THE LOGIC AND POSSIBILITIES OF AN ICONIC ANALYSIS OF REASONING
DOI: 10.23951/2312-7899-2021-1-7-24
The article contributes to the debates on logical diagrams and reasoning studies. Diagrams in logic are multidimensional, multimodal, and language free (reasoning does not need a certain language to be introduced). They emphasize structural peculiarities and, consequently, tell us about reasoning in a way that causes difficulties for the algebraic approach. The article lists historical landmarks in developing such schemes (from Juan Luis Vives to Charles S. Peirce, and other contemporary investigations) and pays attention to the essential aspect of diagrammatic constructions, namely, their iconic nature. For a long time, diagrams had a supportive function; they were used as a tool for “dull-witted students”, but later they became an object of research. Today both diagrammatic approaches are developed and the essence of diagrams is studied. From a semiotic point of view, diagrams are icons. It means they are signs that resemble their objects. In contrast to symbols, icons represent information; they make it observable. Briefly, if symbols connote, icons denote. However, this detailed definition has to be substantially clarified. That is why issues of the second and third sections introduce the variety of iconic signs and characteristics of an iconic analysis, respectively. Different diagrams have different specific iconic features: Leonhard Euler’s schemes possess meaning-carrying relationships, John Venn’s circles (or cells) demonstrate the elimination of “unnecessary information”, while Peirce’s approach introduces the procedure of transforming premises into conclusions. Strictly speaking, if the conclusion is observational in Euler’s diagrams, Peirce’s constructions shift this observational advantage to the process (transformation with the line of identity is observational). First of all, these differences can be explained with various types of icons (image, diagram, and metaphor), but also, which is even more important, with levels of iconicity (optimal and operational). In addition, contemporary scholars propose to distinguish two types of logical languages (“type-referential” and “occurrence-referential”). If we admit that different diagrams belong to different kinds of languages, we get another clarification of diagrammatic variety. The icon and iconicity specification provides possibilities for applying diagrams in investigations on the nature of reasoning in the near future. Indeed, these logical schemes can study reasoning from various perspectives and answer such questions as “How does reasoning flow?”, “What is the logical essence of reasoning validity?”, “How does reasoning provide new knowledge?”, etc.
Keywords: diagrams in logic, Euler, Venn, Peirce, icon, iconic analysis, reasoning
References:
Baron, M. E. (1969). A note on the historical development of logic diagrams. Leibniz, Euler and Venn. The Mathematical Gazette, 53(384), 113–125.
Bellucci, F., & Burton, J. (2020). Observational Advantages and Occurrence Referentiality. In A.-V. Pietarinen, P. Chapman, L. Bosveld-de Smet, V. Giardino, J. Corter, & S. Linker (Eds.), Diagrammatic Representation and Inference 2020. LNCS (LNAI). Vol. 12169 (pp. 202–215). Springer.
Bellucci, F., Chiffi, D., & Pietarinen, A.-V. (2018). Assertive graphs. Journal of Applied Non-Classical Logics, 28(1), 72–91.
Bellucci, F., Pietarinen, A.-V., & Moktefi, A. (2014). Diagrammatic autarchy. Linear diagrams in the 17th and 18th centuries. Proceedings of the International Workshop on Diagrams and Cognition. CEUR Workshop Proceedings, 1132, 23–30.
Bobrova, A. S. (2018). Diagrammaticheskie teorii (Dzh. Venn i Ch.S. Pirs) i logicheskoe sledovanie [Diagrammatic theories (J. Venn and C.S. Pierce) and logical consequence]. VAVT.
Carroll, L. (1958). Symbolic logic and the game of logic. Dover Publications.
Englebretsen, G. (2020). Figuring it out: Logic diagrams. (Philosophical Analysis, 78 series). De Gruyter.
Johnson-Laird, P.N. (2002). Peirce, logic diagrams, and the elementary operations of reasoning. Thinking And Reasoning, 8(1), 69–95.
Kozak, P. (2020). The diagram problem. In A.-V. Pietarinen, P. Chapman, L. Bosveld-de Smet, V. Giardino, J. Corter, & S. Linker (Eds.), Diagrammatic Representation and Inference 2020. LNCS (LNAI). Vol. 12169 (pp. 217–224). Springer.
Lambert, J. H. (1764). Neues Organon oder Gedanken über die Erforschung und Bezeichnung des Wahren und dessen Unterscheidung vom Irrthum und Schein. Bd. 1 (S. 111–133 § 178–219). Leipzig.
Leibniz, G. W. (1903). Opuscules et fragments inédits de Leibniz: Extraits des manuscrits de la Bibliothèque royale de Hanovre (pp. 292–321). Par L. Couturat.
Leibniz, G. W. (1983). Sochineniya v chetyrekh tomakh [Works in four vols]. Translated from German. Vol. 2. Mysl’.
Lemanski, J. (2016). Means or end? On the valuation of logic diagrams. Logiko-filosofskie shtudii, 14(4), 98–121. (In Russian).
Linker, S. (2020). Intuitionistic Euler-Venn diagrams. In A.-V. Pietarinen, P. Chapman, L. Bosveld-de Smet, V. Giardino, J. Corter, & S. Linker (Eds.), Diagrammatic Representation and Inference 2020. LNCS (LNAI). Vol. 12169 (pp. 264–280). Springer.
Ma, M., & Pietarinen, A.-V. (2016). Proof analysis of Peirce’s alpha system of graphs. Studia Logic, 140(3), 625–647.
Markin, V. I., & Kozhokaru, N. I. (2016). Adaptation of Lewis Carroll’s Diagram Method According to Fundamental Syllogistic and Syllogistic of Bolzano. RATsIO.ru – RATIO.ru, 17(2), 1–16. https://journals.kantiana.ru/upload/iblock/caf/Маркин,%20Кожокару.pdf (Accessed: 03.10.2020).
Moktefi, A. (2015). Is Euler’s circle a symbol or an icon? Sign Syst. Stud., 43, 597–615.
Moktefi, A., & Pietarinen, A.-V. (2016). Negative terms in Euler diagrams: Peirce’s solution. In M. Jamnik, Y. Uesaka, & S. Elzer Schwartz (Eds.), Diagrams 2016. LNCS (LNAI). Vol. 9781 (pp. 286–288). Springer.
Øhrstrøm, P. (1997). C.S. Peirce and the quest for gamma graphs. In D. Lukose et al. (Eds.), Conceptual structures: Fulfilling Peirce’s dream (pp. 357–370). (Lecture Notes in Artificial Intelligence, vol. 1257). Springer.
Peirce, C. S. (1931–1958). Collected papers. Vols. 1–8. Harvard UP.
Peirce, C. S. (2019). Logic of the future: Writings on existential graphs. Vols. 1–3. Walter de Gruyter GmbH.
Pietarinen, A.-V. (2006). Signs of logic. Peircean themes on the philosophy of language, games, and communication. Kluwer.
Pietarinen, A.-V. (2018). The beauty of graphs. In P. Chapman, G. Stapleton, A. Moktefi, S. Perez-Kriz, & F. Bellucci (Eds.), Diagrams 2018. LNCS (LNAI). Vol. 10871 (pp. 9–12). Springer.
Pietarinen, A.-V., & Bellucci, F. (2017). Two dogmas of diagrammatic reasoning. A view from existential graphs. In K. A. Hull, & R. K. Atkins (Eds.), Peirce on Perception and Reasoning (pp. 174–196). (Routledge Studies in American Philosophy, vol. 10). Routledge.
Pietarinen, A.-V., & Ma, M. (2018). Gamma Graph calculi for modal logics. Synthese, 195, 3621–3650.
Roberts, D. (1973). The existential graphs of Charles S. Peirce. Mouton & Co.
Shimojima, A. (2015). Semantic properties of diagrams and their cognitive potentials. CSLI Publications.
Smessaert, H., Shimojima, A., & Demey, L. (2020). Free rides in logical space diagrams versus Aristotelian diagrams. In A.-V. Pietarinen, P. Chapman, L. Bosveld-de Smet, V. Giardino, J. Corter, & S. Linker (Eds.), Diagrammatic Representation and Inference 2020. LNCS (LNAI). Vol. 12169 (pp. 419–434). Springer.
Smirnova, E. D. (1996). Logika i filosofiya [Logic and philosophy]. ROSSPEN.
Sochanski, M. (2020). Experimenting with diagrams in mathematics. In A.-V. Pietarinen, P. Chapman, L. Bosveld-de Smet, V. Giardino, J. Corter, & S. Linker (Eds.), Diagrammatic Representation and Inference 2020. LNCS (LNAI). Vol. 12169 (pp. 507–510). Springer.
Stapleton, G., Shimojima, A., & Jamnik, M. (2018). The observational advantages of Euler diagrams with existential import. In P. Chapman, G. Stapleton, A. Moktefi, S. Perez-Kriz, & F. Bellucci (Eds.), Diagrams 2018. LNCS (LNAI). Vol. 10871 (pp. 313–329). Springer.
Stjernfelt, F. (2011). On operational and optimal iconicity in Peirce’s diagrammatology. Semiotica, 186(1–4), 395–419.
Takemura, R. (2020). Euler diagrams for defeasible reasoning. In A.-V. Pietarinen, P. Chapman, L. Bosveld-de Smet, V. Giardino, J. Corter, & S. Linker (Eds.), Diagrammatic Representation and Inference 2020. LNCS (LNAI). Vol. 12169 (pp. 289–304). Springer.
Venn, J. (1894). Symbolic logic. McMillan. https://archive.org/details/symboliclogic02venngoog (Accessed: 04.07.2017).
Vives, J. L. (1531). De censura veri et falsi. In De disciplinis Libri XX. Tertio tomo de artibus libri octo. Antverpia.
Zeman, J. (2002). The Graphical Logic of C.S. Peirce. [Dissertation, University of Chicago]. Online edition. http://web.clas.ufl.edu/users/jzeman/ (Accessed: 01.06.2020).
Issue: 1, 2021
Series of issue: Issue 1
Rubric: ARTICLES
Pages: 7 — 24
Downloads: 1002